10
J, ران و هi ر
．

ر，
色
\qquad （1）ررك

（1）

$$
\begin{aligned}
& v \times v=v^{r} \longrightarrow \text { rúcio } \\
& 1^{r}=|x| \xrightarrow[V]{r}{ }^{r} \text { ن } \\
& r \times r \times r \times r \times r \times r \times r=r \rightarrow \text { 大ie cijognas }
\end{aligned}
$$

$$
\begin{aligned}
& r \times r=r^{r}
\end{aligned}
$$

Y

1) $r^{r}=r \times r=F$
r) $\Delta^{r}=\Delta x \Delta=r \omega$
r) $\mu^{r}=r \times r \times r \times r=N 1$
(F) $1^{r}=\mid \times 1 \times 1=1$
a) $r^{\Delta}=r \times r \times r \times r \times r=r r$
2) $0^{r}=0 \times 0=0$
v) $y^{\prime}=y$
3) $r, \gamma^{r}=r, \Delta \times r, \phi=4, r \Delta$
a) $\left(\frac{\partial}{r}\right)^{\mu}=\frac{\Delta}{r} \times \frac{\Delta}{r}+\frac{\partial}{r}=\frac{1 r \Delta}{R}$

4) $\stackrel{F}{5} \leqslant x \in x \vdash^{k}=1$
r) $\Lambda \times \wedge \times \wedge \times \wedge \times \wedge \times \wedge=$
r) $r \times r \times r \times r \times r \times r \times{ }^{r} \times r \times r \times r=r^{r}$
f) $\quad a \times a=a^{r}$
a) $b \times b \times b=b^{\mu}$
5) $\quad y \times y \times y \times y \times y=y^{a}$
v) $\quad r, v \times r, v=r, v{ }^{r}$
A) $V=v^{\prime}$
\underbrace{n}

$a^{\prime}=a \quad: 1$

$$
1^{a}=1
$$

r

- W

$$
0^{a}=0, a \neq 0
$$

a بu $=a \times a \times a=a$

q) $r, 9 ; 0+r+r=V$
(r) $\underbrace{r_{0}+0^{r_{0}}}=1+{ }^{0}=1$

${ }^{4}$

1) $b \times b \times b \times b=b^{k}$
2) $\left(\frac{\mu}{\Delta}\right)^{\mu}=\frac{\mu}{\sigma} \times \frac{\mu}{\Delta} \times \frac{\mu}{\Delta}$
«) $a^{r}=a \times a \times a$
3) $(a+b)(a+b)(a+b)=(a+b)^{r}$
r) $\left(\frac{a}{b}\right)^{r}=\frac{a}{b} \times \frac{a}{b}$
4) $z \times z \times z=z^{r}$
(4) $\frac{a \times a}{b \times b \times b}=\frac{a^{r}}{b^{r}}$
b) $x \times x=x^{r}$
5) $(x+y)(x+y)=(x+y)^{r}$
v) $(a b)^{\mu}=a b \times a b \times a b$
6) $\frac{x \times x \times x \times x}{y \times y \times y \times y \times y}=\frac{x^{4}}{y^{ब}}$

7) $\Delta^{r}=10 \quad x$

$$
r \Delta=\Delta t \Delta \Delta=\Delta^{r}
$$

«) $t^{r}=\operatorname{ser} x$

$$
\varepsilon^{r}=\varepsilon \times \varepsilon=14
$$

r) $\left(\frac{r}{v}\right)^{r}=\frac{t}{4 a}$
\& $\lambda^{r}=14 x$

$$
\wedge^{r}=\wedge \times \wedge=45
$$

4) $\left(\frac{1}{r}\right)^{r}=\frac{f}{14} \nless r\left(\frac{1}{r}\right)^{r}=\frac{1}{r} \times \frac{1}{r} \times \frac{1}{r} \times \frac{1}{r}=\frac{1}{19}$
v) $r^{r}=r^{r} \times \quad \begin{aligned} & r^{r}=r \times r \times r=\lambda \\ & r r^{r}=r \times r=9\end{aligned} \quad \Lambda \neq 9$

へ) $\left(\frac{r}{r}\right)^{r}=\frac{q}{r} \quad \sqrt{ }$
9) $\left(\frac{r}{v}\right)^{r}=\frac{9}{v} \times\left(\frac{r}{v}\right)^{r}=\frac{\psi}{V} \times \frac{\mu}{V}=\frac{9}{r 4}$

a

$$
S=a \times a \Rightarrow S=a^{r}
$$

$$
\begin{aligned}
{ }^{\circ} \angle^{\prime} B \sin & =r \times r^{r} \times r \times r \\
S & =r \times r^{r} \rightarrow S=r r^{r}
\end{aligned}
$$

yso

-

$$
\begin{gathered}
v=a \times a \times a \\
v=a^{r}
\end{gathered}
$$

$$
\dot{v}=d, b \times \cos \times(\dot{\dot{v}},)
$$

$$
v=a \times b \times a
$$

$$
=a^{r} b
$$

$$
\begin{aligned}
& r^{r}=r \times r=r \quad r^{r}=r \times r=q \quad \varepsilon^{r}=r \times r=14 \quad \Delta r^{r}=\Delta x d=r \Delta \\
& y^{r}=9 \times y=r y v^{r}=r a=4 \quad \wedge^{r}=1 \times 1=4<a^{r}=4 \times 9=11 \\
& \left.10^{r} r^{r} 10 x 0_{0}=100 \quad 11^{r}=\|x\|\right)^{r} \quad \quad 1 r^{r}=\| x r^{r}=1<\varepsilon\left|r^{r}=\left|r_{x}\right| r^{r}\right. \\
& =144
\end{aligned}
$$

$$
\begin{aligned}
& 1,1^{r}=1,1 \times 1,1=1, r 1 \quad r, r^{r}=r, r \times r, r=r^{r}, \wedge r^{r}
\end{aligned}
$$

$$
\begin{aligned}
& 0,1^{r}=\Delta\left|x_{0}\right| x_{0} \mid=1001 r_{1}{ }^{r}=r_{1} \Delta \times r_{1} \omega=1 r, r a
\end{aligned}
$$

\checkmark
ریル (قم (s)

1
-

1) $r-r \times(r-r)$
$0 \quad r^{\prime}-1=\rho-1=\wedge$
(o)nestran raty
cores
r)

$$
\frac{r^{r}+r}{\Delta^{r} \times r r}+\frac{4+r}{r \Delta \times r}=\frac{10}{r_{00}}=\frac{1}{r_{0}}
$$

r)

$$
\begin{gathered}
r \times r^{r}-\left(r^{r}+r\right)=r \times r_{-}(q+r) \\
=1 r \quad 1
\end{gathered}
$$

f)

$$
\frac{r \div(v-\omega)+r^{r} \times \Delta}{\mu^{r}+r^{r}}=\frac{1 r \div r+1 \Delta}{r v+4 r}=\frac{r+1 \Delta}{91}
$$

a) $r^{r}+1^{r}-r \times r^{r}=\wedge+1-r \times 9=9-1 \cap=-9$
4) $\left(10^{r}-\omega^{r}\right) \times\left(r^{r} \div 1^{q}\right)=(\underset{\dot{q}}{(\log -p \omega}) \times(g / 1)=4 \mathrm{Va}$
n

1) $r^{r}+\partial^{r}=14+r \partial=r 1$
r) $r^{r} \times d^{r}=14 \times r a=r o o$
r) $r^{r}-\partial^{r}=14-r^{r} d=-9$
(e) $\quad r^{5} \div 9=11 \div 9=9$
১) $\left(\frac{1}{r}\right)^{r}+\frac{\Delta}{\Lambda}=\frac{1}{\sigma}+\frac{\Delta}{\Lambda}=\frac{r}{\Lambda}+\frac{\Delta}{\Lambda}=\frac{v}{\Lambda}$
2) $s^{r}-E \times r=14-1=1$
V) $\quad\left(\frac{r}{r}\right)^{r}-\left(\frac{r}{r}\right)^{r}=\frac{\gamma}{r}-\frac{F}{a}=\frac{11}{r \varphi}-\frac{14}{r y}=\frac{4 \lambda}{r y}$
^) $\frac{1}{r}+\left(\frac{1}{r}\right)^{r}+\left(\frac{1}{r}\right)=\frac{1}{r}+\frac{1}{r}+\frac{1}{\Lambda}=\frac{r+r+1}{\Lambda}=\frac{\nu}{\Lambda}$
3) $r^{a}-r^{r}+1^{10}=r r+r v+1=\partial+1=4$
(-) $4^{1}+1^{4}+0^{4}=4+1+0=V$
4) $\quad r-r^{r}\left(r-r^{r}\right)=r-r(r-\Lambda)=r-r(-\lambda)=r+r_{0}$ $=Y Y$
(r) $\quad r^{\Delta}-r^{r}+r^{r}-r^{r}+r^{\prime}=\frac{r r r r}{14}+\frac{1}{r} r^{r}+r=r r$

9

1) $(r+r)^{r}=r^{r}+r r$

$$
\begin{aligned}
& (r+r)^{r}=\Delta^{r}=r \Delta \\
& r^{r}+r^{r}=r^{r}+q=1 r
\end{aligned}
$$

r) $(r \times r)^{r}=r^{r} \times r^{r}$
r) $\left(\frac{r}{r}\right)^{r}=\frac{\mu r}{r r} \times\left(\frac{r}{r}\right)^{r}=\frac{r}{r} \times \frac{r}{r}=\frac{4}{r}$
r) $\quad \varepsilon \times r^{r}=(\varepsilon \times r)^{r-r} \quad r^{r} \times r^{r}=r \times 9=r y$
d) $\quad \varepsilon^{r} \times \Delta^{r}=r_{0}^{r} r^{r} \times \Delta^{r}=14 \times r \gamma=600 \quad \begin{aligned} & r_{0} \varepsilon^{r}=140000\end{aligned}$

द) $\quad r_{r}^{r} \times r^{y}=r \wedge \nabla$
V)

$$
r \times r^{r}=y^{r}
$$

1) $r^{r}=\quad r x r^{r}=r$
b) $(-r)^{r}=(-r) \times(-r)=+r$
r) $(-Y)^{r}=(-r) \times(-r) \times(-r)=-1$
r) $(-r)^{r}=(-r) \times(-r) \times(-r) \times(-r)=+14$
c) $(-r)^{\gamma}=(-r) \times(-r) \times(-r) \times(-r) \times(-r)=-r r$
2) $(-r)^{\bar{y}}=(-r) \times(-r) \times(-r) \times(-r) \times(-r) \times(-r)=+9 r$

10
 . =

$$
a^{0}=1, a \neq 0
$$

$$
\begin{array}{ll}
-\omega^{r}=-r \omega & (-)^{r}=+r \Delta \\
(-1)^{v}=-1 & (-1)^{r}=+1 \\
\Lambda^{0}=1 & -1^{r}=-1 \\
r^{r}+r^{0}=r^{r}+1=r & -1^{v}=-1 \\
& (-r)^{r}=-r v
\end{array}
$$

$$
\begin{aligned}
& -r^{r}=-r^{r} \\
& (-\psi)^{r}=(-r) \times(-r) \times(r-\beta)=-r V \\
& -r^{r}=-14 \\
& (-r)^{r}=(-r) \times(-r) \times(r) \times(-r)=+14 \\
& \left.\begin{array}{l}
r^{r} \rightarrow r^{r} \rightarrow r 母 \rightarrow r^{\prime} \rightarrow r^{0} \\
1 r \rightarrow r \rightarrow r \rightarrow r \rightarrow r
\end{array}\right\} \rightarrow r^{0}=1
\end{aligned}
$$

$$
\begin{aligned}
& (-1)^{\text {¿ }}
\end{aligned}
$$

11
 $\mu_{1}^{\infty} Q y_{r}^{\prime \prime}$

$$
\frac{\sigma}{9}\left(\frac{r}{r}\right)^{r} Q r_{1}^{\%}
$$

$$
\%_{0}^{y} Q y_{1}^{y_{1}}
$$

$$
(-\mu) \ominus(-r)^{\prime}
$$

$$
\begin{gathered}
\left(-\frac{1}{r}\right)^{r} \nless \frac{-1}{\mu}\left(\frac{1}{r}\right)^{\omega} \\
\frac{-1}{r r}
\end{gathered}\left(\frac{r}{r}\right)^{r} \circledast \frac{q}{\varepsilon} \quad\left(\frac{r}{r}\right)^{\mu}
$$

$\left(\sigma, q^{0}<(-r)_{4}^{r} \quad \infty \quad b=1 \quad(-r)^{r}=9\right.$

- عهی (U) ?

$$
\begin{aligned}
& r \varepsilon \gamma V=r_{000}+r_{00}+\nu_{0}+V=r^{r} \times l_{0}+r \times 1_{0}^{r}+\partial \times 1_{0}^{1}+V \\
& Y Y_{0}\left|\lambda=r 0000+r 000+10+\partial=r \times\left.\right|_{0} ^{r}+r \times\right|_{0}^{r}+10^{1}+\partial \\
& \varepsilon r Y=\varepsilon_{00}+r_{0}+r=\varepsilon \times 1_{0}^{r}+r \times 1_{0}^{1}+r \\
& \text { YOOL }=r 000+1=r \times 10_{0}^{r}+1
\end{aligned}
$$

$$
\begin{aligned}
& (\omega+r)^{0}=\alpha^{0}+r^{0} \chi \xrightarrow{\longrightarrow}(\omega+r)^{0}=V^{0}=1
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left(火 \frac{1}{r}\right)^{0}>\left(-\frac{1}{r}\right)^{r}()^{r} \frac{1}{r}\right)^{0}=1 \quad\left(-\frac{1}{r}\right)^{r}=+\frac{1}{9} \\
& \left(-\frac{r}{r}\right)^{0}+\left(\frac{1}{r}\right)^{0}>, r \begin{array}{ll}
\left(-\frac{r}{r}\right)^{0}=1 & 1+1>1 \\
\left(\frac{1}{r}\right)^{0}=1 & r>1
\end{array} \\
& a+r^{0}=v \quad D \quad a+r^{0}=a+1=4 \\
& r^{0}+r^{r^{0}+v^{0}}=1 \times L^{0}+r^{0}+v^{0}=1+1+1=r
\end{aligned}
$$

K

$$
\begin{aligned}
& a^{r}-a b \quad a=r \quad b=-r \\
& (r)^{r}-(r)(-r)=r^{r}+r^{r}=1 \\
& a^{r}-b^{r} \quad a=-r \quad b=-r \\
& (-r)^{r}-(-r)^{r}=9-r=a \\
& a^{r}+a^{r} b \\
& a=-1 \quad b=r \\
& (-1)^{r}+(-1)^{r} \times(r)=1+(1) \times(r)=1+r=r \\
& a^{r}-r a^{r} b \quad a=-1 \quad b=-r \\
& (-1)^{r}-r(-1)^{r}(-r)=+1-r(1)(-r)=1+4=V \\
& a^{r}-r a^{r}+a b^{r} \quad a=1 \quad b=-r \\
& \left.\left.(1)^{r}-r(1)^{r}+(1)^{r}()^{r}\right)^{r}=1-r x\right)+9= \\
& 1-R+4=1 \\
& a^{r}-r a b+b^{r} \quad a=-r \quad b=-r \\
& (-r)^{r}-r(-r)(-r)+(-r)^{r} \\
& =r-r+9-r-r-r=1 \text {. } \\
& a^{r}-b^{r}+r a^{r} b^{r} \quad a=-1, b=-r \\
& (-1)^{r}-(-r)^{r}+r(-1)^{r}(-r)^{r} \\
& +1-(+14)+r(-1)(+r) \\
& 1-14-1 Y=-Y V
\end{aligned}
$$

ررك

$$
\begin{aligned}
& f^{r} \times r^{\omega}=r^{r+\Delta}=r^{\circ} r^{2} \\
& a^{r} \times a^{a s}=a^{r+\alpha}=a^{\wedge} \\
& v^{r} \times v^{r}=v^{r+r}=v^{r} \quad \Lambda^{r} \times \Lambda^{\prime}=\Lambda^{r+1}=\Lambda^{r} \\
& x^{r} \times x^{r}=x^{r+r}=x^{(2)} \\
& \left(\frac{1}{4}\right)^{r} \times(0 / \Delta)^{r}=(0 / \Delta)^{r}++^{r} \\
& =(\% \lambda)^{\mathrm{a}} \\
& (-r)^{r} \times(-r)^{r}=\left(\cdot r^{\alpha}\right)^{r+r}=\left(r^{r}\right)^{r} \\
& \begin{array}{c}
=(\gamma \lambda) \\
\left(-(\lambda)^{1} \times(-r)^{r}=(-r)^{1+r}=(-r)^{r}\right.
\end{array}
\end{aligned}
$$

$$
1, \Delta \Delta^{r} \times\left(\frac{r}{k}\right)^{\psi}=(1, a)^{r}+\frac{k}{k}=(1, a)^{\nu} b^{r} \times b^{r} \times b^{a}=b^{r+r}+\Delta=b^{1 .}
$$

$$
\begin{aligned}
& r^{\wedge}=-r_{-}^{r} \times \ldots r^{a} \quad 10^{v}=10^{r} \times 10^{a} \\
& \Delta^{a}=-\Delta^{r} \times-\Delta^{\Delta} \quad 10^{2}=-10^{r} \times 10^{r}
\end{aligned}
$$

$$
\begin{aligned}
& \partial^{r}=\Delta_{r} \times \Delta_{r}=r \Delta^{i} \times r \Delta^{\prime}=r \Delta_{r} \\
& f^{r}=\varepsilon^{r} \times \varepsilon^{r}=14^{\prime} \times 14^{\prime}=14^{r} \\
& r^{4}=r^{r} \times r^{r}=\Lambda^{\prime} \times \hat{r}=r^{r} \quad W^{r}=V^{r} \times r^{r}=\varepsilon 9 \times 89=\varepsilon q^{r}
\end{aligned}
$$

$$
r^{\prime \prime}=r^{10} \times r^{\prime}=1 . r \varepsilon \times r=r 0 r^{\prime} A
$$

$$
r^{r r}=r^{10} \times r^{r}=10 r \varepsilon x r^{\delta}=r .94
$$

$$
(-r)^{a} \times(-1)^{\Delta}=(-r x-1)^{\Delta}=r^{d}
$$

$$
(-r)^{2} \times r^{r}=\left(-r \times r^{r}=(-4)^{2}\right.
$$

$$
\left(\frac{r}{r}\right)^{\infty} \times\left(\frac{r}{r}\right)^{\infty}=\left(\frac{f^{1}}{\not x} \times \frac{\frac{r}{r}}{r}\right)^{\infty}=\left(\frac{1}{r}\right)^{\infty}
$$

$$
\left(\frac{1}{r}\right)^{r} \times(r)^{r}=\left(\frac{1}{r} \times r\right)^{r}=\left(\frac{r}{r}\right)^{r}
$$

$$
\begin{aligned}
& 1 \gamma^{2}=(r \times \omega)^{2}=r^{2} \times \theta^{v}(\theta) \\
& 10^{\Delta}=(r \times \Delta)^{\omega}=r^{\Delta} \times \theta^{\Delta} \\
& 1 r^{v}=\left(r^{r} \times \varepsilon\right)^{v}=r^{v} \times \varepsilon^{v} \\
& (x y)^{\gamma_{0}}=x^{r_{0}} \times y^{\gamma_{0}} \\
& r_{0}^{4}=\left(\varepsilon x^{\Delta}\right)^{4}=\varepsilon^{4} x \partial^{4} \\
& (\lambda y z)^{\wedge}=x^{\wedge} \times y^{\wedge} \times z^{\wedge} \\
& y^{\Delta}=\left(r x^{\mu}\right)^{\omega}=r^{\Delta} x^{\mu}{ }^{\Delta} \\
& (a b)^{\vee}=a^{\vee} \times b^{\vee}
\end{aligned}
$$

$$
\begin{aligned}
& r^{1 r}=r^{10} \times r^{r}=10 r C x \Lambda=\text { N19r } \\
& \begin{array}{c}
r_{r}^{r} \times \Delta^{r}=(r \times \Delta)^{r}=\sqrt{r} \\
\left(\frac{r}{v}\right)^{r} \times \Delta^{r}=\left(\frac{r}{v} \times \Delta\right)^{r}=\left(\frac{10}{v}\right)^{r}
\end{array} \\
& a^{r} \times b^{r}=(a \times b)^{r}=(a b)^{r} \\
& \left.x^{r} \times y^{c}=(x \times y)^{r}=(x y)^{t}\right) \\
& v^{*} \times r^{r}=(v \times r)^{r}=r 1 \square
\end{aligned}
$$

$\bigcup_{\substack{\text { meloat }}}^{\Delta_{\Delta^{4}}^{r} \times \Delta^{r}} \times v^{4}=\Delta^{4} \times v^{4}=\operatorname{La}^{4}$

(d) $r^{a} \times r^{b}=r^{a+b}$
(4) $\partial^{v} \times t^{r} \times \partial^{r} \times t^{4}=\frac{\partial^{2} \times \partial^{r} \times s^{r} \times r^{4}}{=\Delta^{q}}=\Delta^{q} \times r^{q}=r_{0}^{q}$
(v) $\begin{aligned} & \left(r^{V} \times \partial^{r} \times 10\right)^{v} \times\left(10^{c} \times \partial^{\Delta} \times r^{9}\right)=r^{V} \times r^{q} \times \Delta^{r} \times \Delta^{\omega} \times 10_{0} \times 10^{r} \\ & =r^{14} \times \Delta^{v} \times 10\end{aligned}$

14

$$
\begin{aligned}
& \xi^{1_{0}}=(r \times r)^{1_{0}}=r^{1_{0}} \times r^{10_{0}}=r^{r_{0}}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{r}{r}\right)^{r}=\frac{r}{r}{ }_{r}^{r}+\frac{r}{r} \frac{r}{r} \frac{r}{r} \\
& \left(\frac{r}{r}\right)^{r}=\frac{r}{r} \times \frac{r}{r} \times \frac{r}{r}
\end{aligned}
$$

$$
\begin{aligned}
& r^{\omega} \square \wedge=\kappa \quad \text { सि固 } \wedge=\varepsilon \\
& r^{r} \square v^{r}=\Delta \wedge \quad 0 \quad \boxminus<q=\gamma \lambda \\
& (-v)^{b} \square \wedge^{\prime}=r^{r}, \quad \rightarrow \lambda=9 \\
& r^{4} \square 14=r^{0} \square r^{r} \text { ye 回 } 19=1 \text { Qr } \\
& \varepsilon=\varepsilon
\end{aligned}
$$

λ

$$
\stackrel{0}{-1}, i \rightarrow\left(\frac{1,0}{\infty}, 1\right.
$$

$$
U \times \|=(Y)
$$

$$
\overrightarrow{11}=2 \operatorname{li}) \operatorname{le}
$$

 cic_{6} ra

$$
\begin{aligned}
& \sqrt{r_{d}}=\omega \\
& \sqrt{14}=r \\
& \sqrt{\varepsilon \varepsilon}=1 \\
& \sqrt{8 q}=V \\
& -\sqrt{14}=-\kappa-\sqrt{\frac{9}{5 a}}=-\frac{\mu}{\pi} \\
& -\sqrt{11}=-4^{\circ} \quad-\frac{9}{r_{\Delta}}=-
\end{aligned}
$$

In
:

$$
\underset{d}{1}<r<r
$$

$$
\sqrt{\sqrt{1}}<\sqrt{r}<\sqrt{r}
$$ $1<\sqrt{r}<r$

0

$$
14<Y_{0}<r_{\infty}
$$

 بَ

$$
\begin{aligned}
<9<41<4 \varepsilon \rightarrow \sqrt{E q}<\sqrt{41}<\sqrt{4 c} \\
v<\sqrt{41}<\wedge
\end{aligned}
$$

$$
v<\sqrt{41}<\wedge
$$

$$
\begin{aligned}
& \sqrt{1}=1, \sqrt{F}=r, \sqrt{9}=r, \sqrt{14}=r, \sqrt{r d}=0, \sqrt{r y}=4 \\
& \sqrt{49}=r, \sqrt{4 \delta}=1, \sqrt{\sqrt{\mid r}}=9, \sqrt{100}=10, \sqrt{|r|}=11
\end{aligned}
$$

$$
\begin{aligned}
& x \sqrt{r_{4}}=\sqrt{r}_{r_{y}} \\
& \sqrt{y y}=-4 \\
& x \\
& -\sqrt{r_{y}}=-4
\end{aligned}
$$

190
的
 リiso， ©

ح？

$$
\frac{a+4}{r}=\Delta, \partial
$$

$\rightarrow \sqrt{\text { Y }} \simeq \partial, \mu$

$$
\begin{aligned}
& \frac{\lambda+9}{r}=10 \\
& \text { •的向 }
\end{aligned}
$$

$$
\sqrt{\Lambda_{0}} \simeq \Lambda_{1} 9
$$

Yo
它

$$
\begin{array}{ll}
-x-=+ & \text { yj =ivicúsís. } \\
+x+3+ &
\end{array}
$$

$(V)^{r}=(-V)^{r}=69$ in en Cq
$0^{r}=0 . C$ Co C.

- Er Eun.

$$
\sqrt{\omega_{0} 0}=r r, r
$$

4

$$
\begin{aligned}
& \left(r^{r}+0^{c}\right)^{\prime}+r^{r} x^{r}-1^{r} \\
& (1+0)^{1}+r \times 9-1=1+r 4-1=8 r
\end{aligned}
$$

$$
\begin{aligned}
& (, \mu \partial)^{r} \times\left(\frac{1}{\varepsilon}\right)^{\mu} \times \frac{1}{\varepsilon^{\delta}}=\left(\frac{1}{\varepsilon}\right)^{r} \times\left(\frac{1}{\varepsilon}\right)^{r} \times\left(\frac{1}{\varepsilon}\right)^{\alpha} \\
& \left(\frac{1}{\varepsilon}\right)^{r+r+\lambda}=\left(\frac{1}{\varepsilon}\right)^{10}
\end{aligned}
$$

> 1
> .

$$
(11)^{r}=\mid K 1 \quad(-11)^{r}=1 r l^{2}
$$

$$
\begin{array}{ll}
\sqrt{E 9}=V & -\sqrt{|Y|}=-11 \\
\sqrt{Y Y}=11 & \sqrt{149}=1 r \\
& \sqrt{\frac{\varepsilon}{\varepsilon q}}=\frac{\gamma}{W}=-\infty
\end{array}
$$

